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The complex Swift-Hohenberg equation models pattern formation arising from an oscillatory instability with
a finite wave number at onset and finds applications in lasers, optical parametric oscillators, and photorefractive
oscillators. We show that with real coefficients this equation exhibits two classes of localized states: localized
in amplitude only or localized in both amplitude and phase. The latter are associated with phase-winding states
in which the real and imaginary parts of the order parameter oscillate periodically but with a constant phase
difference between them. The localized states take the form of defects connecting phase-winding states with
equal and opposite phase lag, and can be stable over a wide range of parameters. The formation of these defects
leads to faceting of states with initially spatially uniform phase. Depending on parameters these facets may
either coarsen indefinitely, as described by a Cahn-Hilliard equation, or the coarsening ceases leading to a
frozen faceted structure.
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I. INTRODUCTION

The real Swift-Hohenberg equation �RSHE� has proved to
be an invaluable model equation for systems undergoing a
bifurcation to time-independent structured states with a finite
wave number at onset �1�. The equation was originally sug-
gested as a model of infinite Prandtl number convection �2�
but finds application in its simplest form in the theory of
buckling �3�, phase transitions �4�, and nonlinear optics �5,6�.
The equation is particularly useful in understanding localized
structures that are commonly found in systems exhibiting
bistability between two states, one of which is homogeneous
in space �the trivial state� while the other is heterogeneous or
structured �1�. In this case the equation takes the form, in one
spatial dimension,

ut = ru − ��x
2 + k0

2�2u + f�u� , �1�

where u�x , t� is a real order parameter and f�u� denotes non-
linear terms. Most useful are the two cases f = f23�b2u2

−u3 �7� and f = f35�b3u3−u5 �8�. When b2��27 /38k0
2 �re-

spectively, b3�0� the primary bifurcation from the trivial
state u=0 takes place at r=0 and yields a subcritical branch
of spatially periodic states with wave number k0. This branch
is unstable but acquires stability at finite amplitude at a
saddle-node �SN� bifurcation. In addition, it is known that on
the real line there are two �respectively, four� branches of
spatially localized states �LSs� that bifurcate from u=0 si-
multaneously with the periodic states, and do so likewise
subcritically. These states are therefore also initially un-
stable. When followed numerically these states become bet-
ter and better localized and once their amplitude and width
become comparable to the amplitude and wavelength of the
competing periodic state these states begin to grow in spatial
extent by adding rolls symmetrically at either side. In a bi-
furcation diagram this growth is associated with back and
forth oscillations across a “pinning” interval. This behavior

is known as homoclinic snaking �1,7,9–11� and is associated
with repeated gain and loss of stability of the associated LSs.
On a qualitative level this behavior can be understood to be
the result of pinning of the fronts at either side of the local-
ized structure to the heterogeneous structure between them
�12�. Mathematically, the snaking behavior is a consequence
of transverse intersection of the two-dimensional unstable
manifold of the homogeneous state and the three-
dimensional center-stable manifold of the spatially periodic
state �1,9,13,14�, together with reversibility under x→−x.
These results are reviewed in �11�.

There are many systems, however, that are described by
the Swift-Hohenberg equation for a complex order param-
eter. This equation models pattern formation arising from an
oscillatory instability with a finite wave number at onset
�15,16�. As a result the complex Swift-Hohenberg equation
�CSHE� frequently arises in nonlinear optics. For example,
Lega et al. �17,18� showed that the general set of Maxwell-
Bloch equations for class A and C lasers can be adequately
described by the CSHE; see also �19�. The CSHE also de-
scribes nondegenerate optical parametric oscillators �OPOs�
�20–22�, photorefractive oscillators �23�, semiconductor la-
sers �24�, and passively mode-locked lasers �25�. In general,
the resulting Swift-Hohenberg equation in these systems has
complex coefficients and hence time-dependent solutions. In
the present paper we restrict attention to a special case of the
CSHE, namely, the case of real coefficients, that continues to
admit stationary solutions. Although this case admits all the
time-independent solutions familiar from RSHE, it is a much
richer system: since the real and imaginary parts of the order
parameter are coupled by the nonlinear terms, the RSHE
stationary states have different stability properties, and in-
deed the stationary CSHE solutions have nontrivial spatial
structure in both amplitude and phase. Understanding of this
special case is thus a prerequisite for gaining a deeper insight
into the behavior of the CSHE with complex coefficients.

In the following section we describe the basic properties
of the resulting equation, focusing on the bistable regime. In
Sec. III we discuss the presence and stability of the so-called
phase-winding states in which the real and imaginary parts*lendert.gelens@vub.ac.be
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of the order parameter oscillate with a constant but nonzero
phase difference and the phase of each jumps by the same
integer multiple of 2� across the domain. In Sec. IV, we
demonstrate numerically that localized states can take the
form of defects connecting phase-winding states with equal
and opposite phase lag. We study the bifurcation behavior of
these LSs and show that they can be stable over a wide range
of parameter values. In Sec. V we show that states with
initially uniform phase are unstable to a faceting instability
generating these defects and show that under appropriate
conditions the growth of this instability is described by the
Cahn-Hilliard equation for the spatial phase gradient. The
predicted coarsening compares well with direct numerical
simulations of the original complex Swift-Hohenberg equa-
tion. In other regimes we find that coarsening ceases when
the LSs lock to their oscillatory tails; the computed transition
between the coarsening and frozen regimes agrees well with
numerical simulations. The paper concludes with a brief dis-
cussion.

II. CUBIC-QUINTIC COMPLEX SWIFT-HOHENBERG
EQUATION WITH REAL COEFFICIENTS

We study the bistable CSHE with f35 nonlinearity,

ut = ru − ��x
2 + k0

2�2u + b3�u�2u − �u�4u , �2�

where u is a complex field. The equation is fully param-
etrized by the real parameters r and b3, as well as the wave
number k0 or equivalently the domain length L; in the fol-
lowing we focus on a typical value of b3 �b3=1.5� and study
the behavior of this equation as a function of the parameter r
for different choices of k0 and L, as convenient.

We rewrite Eq. �2� in terms of either the real and imagi-
nary parts of the order parameter u�x , t�, or in terms of am-
plitude and phase variables, defined by

u�x,t� = uR�x,t� + iuI�x,t� � R�x,t�ei��x,t�. �3�

Thus,

Rt = rR + b3R3 − R5 − 2k0
2Rxx + 6Rxx�x

2 + 12Rx�x�xx − k0
4R

− R�x
4 + 2k0

2R�x
2 + 3R�xx

2 + 4R�x�xxx − Rxxxx, �4�

R�t = 4Rx�x
3 − 6Rxx�xx − 4Rx�xxx − 4k0

2Rx�x − 4Rxxx�x

+ 6R�x
2�xx − 2k0

2R�xx − R�xxxx. �5�

Spatially homogeneous solutions, hereafter referred to as
“flat,” take the form u=R0�t�ei�0�t�. Thus,

R0t = �r − k0
4�R0 + b3R0

3 − R0
5, �6�

�0t = 0, �7�

with stationary solutions given by

R0
2 = Rs

2 ��0,	b3 � �b3
2 + 4�r − k0

4�
2


� , �8�

�0 = �s, �9�

where �s is any constant �Rs�0�. The amplitude Rs of these
homogeneous states is shown in Fig. 1.

A. Temporal stability

To determine the stability of these states we let u�x , t�
= �Rs+��x , t��exp i�s, where � is a complex infinitesimal per-
turbation satisfying

�t = r� − ��x
2 + k0

2�2� + b3Rs
2�2� + �̄� − Rs

4�3� + 2�̄� . �10�

Writing ���R+ i�I we obtain

�Rt = r�R − ��x
2 + k0

2�2�R + 3b3Rs
2�R − 5Rs

4�R, �11�

�It = r�I − ��x
2 + k0

2�2�I + b3Rs
2�I − Rs

4�I. �12�

Thus, with ��R ,�I��exp�ikx+�t� we find the pair of growth
rates

�R = 2b3Rs
2 − 4Rs

4 + �2k0
2 − k2�k2, �13�

�I = �2k0
2 − k2�k2, �14�

describing the stability of the flat states Rs
��0 with respect

to amplitude and phase perturbations, respectively.
Temporal stability of the trivial state. The state u=0 is

destabilized by periodic modulations with wave number k
=k0 at r=0 �point T0� in a Turing bifurcation �also called
modulational instability in the optics literature�. A band of
unstable wave numbers develops around k=k0 for r�0 and
spreads to k=0 when r reaches r=k0

4 �point P� at which point
a Hamiltonian pitchfork bifurcation to nonzero flat states oc-
curs �Fig. 1�.

Temporal stability of the nonzero flat states. The state Rs
−

is always unstable with respect to amplitude perturbations.
At the saddle-node bifurcation, �r ,us�= �−b3

2 /4
+k0

4 , ��b3 /2� �point SN�, the k=0 amplitude mode stabi-
lizes but a band of unstable wave numbers around k=k0 re-
mains. The last of these, k=k0, stabilizes at r= �1 /8��−b3

2

+10k0
4−b3

�b3
2+4k0

4� �point T+� and for larger r the upper
branch Rs

+ is stable with respect to amplitude modes �Figs. 1
and 2�. In addition, the nonzero flat states are always un-
stable to phase perturbations with wave number k in the
range 0	k2	2k0

2; translation invariance implies that the
phase growth rate of these perturbations vanishes when k
=0. Thus, the states beyond point T+ are amplitude stable but
phase unstable, and for small wave numbers �k
k0� the
growth rate of the instability is positive but small. This ob-
servation will be important in what follows.
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FIG. 1. Stationary homogeneous solutions Rs for b3=1.5 and
k0=1. These states are always unstable to phase modes, although
the amplitude mode becomes stable beyond the Turing instability
T+ of the nonzero state �solid line�. Insets show the structure of the
spatial eigenvalues of the amplitude mode along Rs=0 and Rs

��0,
as described by Eq. �15�.
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Figure 1 summarizes these results. Solid �dashed� lines
denote solutions that are stable �unstable� with respect to the
amplitude mode. The figure also shows the spatial eigenval-
ues of the amplitude mode along the different branches.

B. Spatial stability

In order to understand the presence of LS homoclinic or
heteroclinic to the flat states we also need to know their
stability properties in space. For this purpose we write
R�x�= �Rs+��x��exp i�s, where ���R+ i�I�e�x. The spatial
eigenvalues � satisfy the equations

�4 + 2�2k0
2 − 2b3Rs

2 + 4Rs
4 = 0, �15�

�2��2 + 2k0
2� = 0. �16�

The former gives the spatial eigenvalues of the amplitude
mode; these are as in the real Swift-Hohenberg equation. The
latter equation gives the spatial eigenvalues for the phase
mode. Evidently there is always a pair of zero spatial eigen-
values, a consequence of the invariance of the CSHE under
phase shifts, together with spatial reversibility. In addition,
there is a pair of purely imaginary eigenvalues. Neither of
these depends on the state or the value of r.

The structure of the spatial eigenvalues of the amplitude
mode in the complex plane is given in the insets in Fig. 1.
Figure 3 shows the regions with different spatial characteris-
tics of the state R0=0 and the upper flat state R0=Rs

+ in the
�b3 ,r� parameter plane when k0=1.

Spatial stability of the trivial state. For r	0, the spatial
eigenvalues of u=0 form a complex quartet �not shown�. At
r=0 �point T0�, the eigenvalues collide pairwise on the
imaginary axis and a Turing bifurcation takes place, after
which �r�0� the eigenvalues split but remain on the imagi-
nary axis �case I�. At r=k0

4 �point P� two of the eigenvalues
collide at the origin �primary steady-state instability� and in
r�k0

4 they move onto the real axis �case II�.
Spatial stability of the nonzero flat states. The subcritical

flat branch created at r=k0
4 is characterized by a pair of real

eigenvalues and a pair of purely imaginary eigenvalues of
the amplitude mode. The former vanish at r=k0

4 �point P�

and split along the real axis �case III� before returning to zero
at �r ,us�= �−b3

2 /4+k0
4 , ��b3 /2� �point SN�, where the flat

branch folds. After the fold, the pair of zero eigenvalues
moves onto the imaginary axis �case IV�; at r= �1 /8��−b3

2

+10k0
4−b3

�b3
2+4k0

4� �point T+� these eigenvalues collide
pairwise with existing imaginary eigenvalues at �= � ik0 and
split, forming a quartet of complex eigenvalues �case V�.
This point thus also corresponds to a Turing bifurcation. Spa-
tial reversibility implies that LSs biasymptotic to u=0 are
structurally stable when r	0 �regions �vi�–�viii� of Fig. 3�
and likewise for LSs biasymptotic to u=us

+ in regions �ii�,
�v�, and �viii� of Fig. 3.

C. Homoclinic snaking of localized states

Figure 4�a� shows the branch of spatially periodic states
emerging at the modulational instability at r=0 in terms of
its L2 norm per unit length �hereafter, energy�, together with
the �four� classical snaking branches of LSs emerging
from this point �11�. We refer to these structures as �ueven
and �uodd according to their parity: the LSs along the black
snaking curve are invariant under �x ,�s�→ �−x ,�s�; the
LSs along the gray snaking curve are invariant under
�x ,�s�→ �−x ,�s+�� �Fig. 4�b��. At each turn in the snaking
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branch an extra half wavelength of the periodic state is added
on either side of the LS until the entire domain is filled and
the branches exit the snaking region and connect to the pe-
riodic pattern branch �11,26�. In the following we refer to the
periodic pattern as a standing wave �SW� since the real and
imaginary parts �uR ,uI� of u�x� oscillate in �spatial� phase: in
the �uR ,uI� plane the SW corresponds to an oscillation along
an arbitrarily oriented radial line �27,28�.

D. Numerical method

The numerical time integration method used throughout
the paper is a two-step pseudospectral method that calculates
the linear part of the equations in Fourier space, while evalu-
ating the nonlinear terms in real space �29,30�. Periodic
boundary conditions are used, and the system size L is taken
large enough to ensure that the LSs are much smaller than
the domain length, thereby avoiding boundary effects. The
space discretization is defined by dx=L /N �with N=512 or
1024 as the number of discretization points� with a typical
temporal time step dt=10−3. Stationary profiles found by
time integration with appropriate initial conditions are then
continued in parameter space using a Newton method �29�.
In this method the real and imaginary parts of u in Eq. �2� are
discretized in N grid points, resulting in a set of 2N coupled
nonlinear equations for the real and imaginary parts of u.
Although there is no guarantee that all solution branches will

be found in this way, an important advantage of the Newton
method is that it automatically generates the Jacobian of the
system, allowing us to check the stability of the stationary
structures as they are computed.

III. PHASE-WINDING STATES

In the numerical simulations reported below we encounter
states in which the phase is no longer constant in space: over
large parts of the domain the phase may vary linearly with
the spatial coordinate x. We will refer to solutions of this
type as phase winding, by analogy with the theory of con-
vection in bounded domains �31�, or the description of the
director orientation relative to the velocity field in freely sus-
pended liquid crystal films �32�.

We first examine how the observed phase gradient is se-
lected and then discuss the temporal and spatial properties of
stationary states of the form u=Rs exp i�s, Rs�0, where

Rs
2 =

b3 � �b3
2 + 4�r − �K2 − k0

2�2�
2

, �17�

�s = Kx , �18�

and K is a real constant. In the following we refer to the
quantity K��x� as the modulation wave number. Figure 5
shows an example of such a state when r=−0.3, b3=1.5, and
k0=1, obtained using periodic boundary conditions at x
=0,L. Observe that this state is not symmetric under spatial
reflection; generically states of this type are expected to drift
but here these states are necessarily stationary. This is a con-
sequence of the variational nature of Eq. �2� when the coef-
ficients are real. In view of the constant phase difference �in
space� between the real and imaginary parts of the order
parameter u �Fig. 5�c�� we refer to phase-winding states of
this type as rotating waves �RWs�: in the �uR ,uI� plane RWs
correspond to closed orbits around the origin �Fig. 5�d��.

In a phase-winding solution the net phase jump �� across
a domain of length L must be 2�n, where n is an integer, in
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line: stable� emerging at the modulational instability at r=0, to-
gether with the classical snaking branches emerging from the same
point. The black �gray� snaking branch corresponds to even �odd�
parity LS. �b� Zoom of the homoclinic snaking region. Parameters:
b3=1.5, k0=1, L=96, and N=512.
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order that the phase satisfies the imposed periodic boundary
conditions. When this phase jump is uniformly distributed
it produces a constant phase gradient specified by Kn
�2�n /L. Figure 6 shows the branches corresponding to n
=4, . . . ,10. The branches with n=7 and n=8 exist over the
widest parameter range and are the “most” stable. In numeri-
cal simulations with random initial conditions these are the
states that typically result. In the event that Kn=k0 the corre-
sponding phase-winding solution bifurcates at r=0, i.e., si-

multaneously with the SW branch shown in Fig. 4. However,
although these two periodic states have, in this case, the
same wave number k0, they are distinct.

A. Temporal stability

Writing R=Rs+�Reikx+�t and �=�s+��eikx+�t, where Rs
and �s are given by Eqs. �17� and �18�, one finds that the
perturbations �R ,�� evolve according to

	− �k2 + K2 − k0
2�2 − 4K2k2 + r + 3b3Rs

2 − 5Rs
4 − � 4KikRs�k0

2 − k2 − K2�
− 4Kik�k0

2 − k2 − K2�/Rs − k2�6K2 − 2k0
2 + k2� − �


	�R

��

 = 0.

Thus, the temporal growth rate � satisfies the quadratic equation

�2 − ��− 2k4 − 11K2k2 + 3k0
2k2 + 2b3Rs

2 − 4Rs
4� − k2�6K2 − 2k0

2 + k2��− k4 + 2�k0
2 − K2�k2 + 2b3Rs

2 − 4Rs
4 − 4K2k2� − 16K2k2�k0

2

− k2 − K2�2 = 0. �19�

When K=0 this equation reduces to Eqs. �13� and �14�. We call the two roots of this equation �1,2; Fig. 7�a� shows the larger
root �1 as a function of k2 when n=10. The solution is unstable with respect to long-wavelength perturbations above the saddle
node �cf. �33�� but stabilizes with increasing r �cf. Fig. 6�.

B. Spatial stability

Writing R=Rs+�Re�x and �=�s+��e�x, where Rs and �s are given by Eqs. �17� and �18�, one finds that the perturbations
�R ,�� evolve according to

	− ��2 + k0
2 − K2�2 + 4K2�2 + r + 3b3Rs

2 − 5Rs
4 4K�Rs�k0

2 + �2 − K2�
− 4K��k0

2 + �2 − K2�/Rs �2�− 2k0
2 − �2 + 6K2�


	�R

��

 = 0.

Thus, the spatial eigenvalues � satisfy

�2���4 + 2�k0
2 − K2��2 − 2b3Rs

2 + 4Rs
4 − 4K2�2���2k0

2 + �2 − 6K2� + 16�2K2�k0
2 + �2 − K2�2 = 0. �20�

Once again this equation reduces to Eqs. �15� and �16� when
K=0. When K�0 the pair of zero eigenvalues remains but
the remaining sixth-order characteristic equation no longer

factors. Figure 7�b� shows the n=10 phase-winding branch
together with insets showing the structure of the spatial ei-
genvalues as given by Eq. �20�. In particular, the saddle node
on the branch of phase-winding solutions no longer corre-
sponds to a bifurcation in space.

IV. FACETING OF PHASE-WINDING STATES

Simulations of the complex Swift-Hohenberg equation
�Eq. �2�� typically reveal the presence of LSs that are local-
ized in both amplitude and phase. The observed structures
are generally symmetric under reflection in x with pro-
nounced localization in amplitude but extended phase varia-
tion that is almost linear, with slope K, say, on one side of the
symmetry axis and slope −K on the other side. When peri-
odic boundary conditions are imposed on both R�x� and
��x�, states of this type come in pairs. The resulting phase
variation thus resembles a faceted surface; the relatively
abrupt changes in the phase gradient are associated with am-
plitude defects and the widths of these two transition regions
are comparable.
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where Kn�2�n /L �n=1,2 , . . .�. Solid �dashed� lines depict stable
�unstable� solutions. Parameters: b3=1.5, k0=1, and L=48.
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Figure 8�a� shows the branch of in-phase oscillations with
wave number k0 �SW: labeled II and shown in Fig. 9� that
bifurcate from u=0 at r=0 together with the �four� snaking
branches �labeled I� of real-valued LSs that bifurcate from
the same point �Fig. 4�. Figure 8�a� also shows the first of the
branches of the phase-winding states from Eqs. �17� and �18�
�see Fig. 6�, corresponding to n=8 �dark gray curve, labeled
III in the figure�, found by integrating the complex Swift-
Hohenberg equation in time, starting from a suitable initial

condition. In general, this procedure produces several LSs
that are localized in both amplitude and phase �light gray
curve, labeled IV in the figure� but in some cases one obtains
a constant amplitude phase-winding state. Curve III is ob-
tained from such a state by numerical continuation in the
uR ,uI variables. Figure 5 shows a sample profile from this
branch at location �1�. The phase gradient on this branch is
constant and essentially independent of the amplitude. As
explained in the previous section, this is a consequence of
the fact that the phase jump �� across a domain of length L
must be 2�n, where n is an integer, in order that the phase
satisfies periodic boundary conditions. When the phase var-
ies linearly in space, this phase jump produces the phase
gradient Kn=2�n /L. For branch III of constant amplitude
phase-winding state with n=8 �Fig. 5�, the phase gradient is
therefore K8�1.05, which is very close to the assumed value
of k0.

In contrast, the light gray curve, labeled IV, corresponds
to continuation from a pair of states that are localized in
amplitude and phase. These types of LSs form typically �but
not exclusively� when the initial conditions are such that
��=0. As a consequence we now find a bound state of two
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equidistant defects, with opposite chirality. The phase out-
side these defects varies almost linearly, with alternating gra-
dients �K. However, in the presence of defects these gradi-
ents are no longer selected by the boundary conditions, as is
the case for the spatially homogeneous phase-winding states
discussed in the previous section. The defects allow the
phase gradient �K to have the preferred value �k0 while
still satisfying the phase condition ��=0. The presence of
the defects is also reflected in the amplitude R�x� of the state;
the profiles of R�x�, like those of K�x���x�, are symmetric
under reflection in x. Figure 8�a� shows that as r decreases
branch IV of these defect states undergoes a saddle-node
bifurcation, while profiles �3�–�5� of Fig. 10 show that below
the saddle node the phase gradient becomes markedly non-
uniform in space. Moreover, Fig. 8�b� shows that these states
connect to the branch of in-phase spatially periodic states
�SW� just beyond A. This point A, at r=−0.274, represents a
steady-state bifurcation of the SW. The LSs bifurcate from
the SW at slightly larger values of r, much as the RWs bi-
furcate from u=0 beyond r=0, since the solutions are re-
quired to be periodic in space with the imposed spatial pe-
riod L subject to any imposed phase jump ��. For example,
the branch shown in Figs. 8�a� and 8�b� bifurcates from the
SW at r=−0.241. In space these bifurcations correspond to
the spatial analog of the direction-reversing Hopf bifurcation
from a group orbit of periodic states discussed in �34�. The
resulting LS correspond to �say� a clockwise rotating wave
connected to its symmetric partner by a defect. When states
of this type are followed toward larger values of r, one ob-

serves a gradual decrease in nonuniformity in both amplitude
and the phase gradient �Fig. 10, profile �5��, and the solution
resembles more and more a front connecting equal and op-
posite wave numbers �K� �k0. In the following we refer
to states of this type as modulated rotating waves �MWs�.

Figure 8�a� also shows that the branch of localized phase-
winding states �MW� undergoes a further bifurcation at point
B above the saddle node. The new branch of solutions still
consists of states with two defects but the two defects are no
longer equally spaced �Fig. 11, profiles �6�–�8��. Details of
the region where this bifurcation takes place are shown in
Fig. 8�c�. We refer to solutions of this type as bound states
�BSs�.

At larger values of r, Figs. 8�a� and 8�d� reveal the pres-
ence of several disconnected branches. These branches also
correspond to bound states of two identical localized struc-
tures. Examples are shown in Figs. 12 and 13. These BSs
form via locking between the oscillatory tails of individual
localized structures and differ most in the amplitude R�x� of
the defects that are involved. Consequently they are part of a
whole family of similar BSs with different separations, all on
individual branches with similar structure. This behavior is
reminiscent of the stacks of disconnected branches extending
to arbitrarily large values of the control parameter r that are
present in the real Swift-Hohenberg equation with f23 non-
linearity in a certain range of values of the parameter b2 �7�.
In some parameter regimes these change into stacks of isolas.
It is possible, therefore, that similar stacks of isolas of de-
fects in the phase-winding states may also exist in the
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FIG. 10. MW: solution profiles at locations �3�, �4�, and �5� �r=−0.3, −0.45, and 0.25, respectively� in Fig. 8. Top two panels: amplitude
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present system. Moreover, bound states of two localized
structures in the real Swift-Hohenberg equation lie generi-
cally on nested isolas, as described in �35�; the sequence of
branches of such states revealed in Figs. 8�a� and 8�d� re-
sembles the structure of one of a stack of such isolas that in
the present problem appear to open out to arbitrarily large
values of r.

V. COARSENING DYNAMICS: THE CAHN-HILLIARD
EQUATION

In the previous sections we have discussed the presence
of LSs, localized both in amplitude and phase. These LSs

have been demonstrated to be associated with phase-winding
states in which the real and imaginary parts oscillate out of
phase but the phase jumps by an integer multiple of 2�
across the domain. The LSs take the form of defects connect-
ing phase-winding states with equal and opposite modulation
wave numbers �k0 and hence can be viewed as kinks or
antikinks connecting states with opposite phase gradients. As
shown in Sec. III, the spatial eigenvalues in the region where
these LSs are observed are generally complex, implying that
the LSs can be viewed as being the result of locking of the
oscillatory tails of each phase. In the present case this
Pomeau-type locking �12� leads to a large pinning region in
which the LSs are observed.
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FIG. 12. BS: solution profiles at locations �9� and �10� in Fig. 8. Top two panels: amplitude R and the modulation wave number K
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In this section, we study the stability of the flat constant-
phase states with respect to long-wavelength perturbations.
The analysis is motivated by the temporal stability results
that indicate the presence of a slowly growing long-
wavelength phase mode �Eq. �14��. We show that the evolu-
tion of long-wavelength perturbations is described by a
Cahn-Hilliard-type equation. In the region of validity of this
equation, there is no locking of oscillatory tails and coarsen-
ing of the growing perturbations is predicted. This prediction
compares well with direct numerical simulations of the com-
plex Swift-Hohenberg equation. Extensions of the theory to
other regimes do predict locking of adjacent structures and
hence evolution to a frozen asymptotic state.

A. Derivation of the Cahn-Hilliard equation

We consider the evolution of long-wavelength phase
modulation of the upper flat state R0=Rs

+, �0=�s. We first
rewrite Eqs. �4� and �5� as coupled equations for the ampli-
tude R�x , t� and modulation wave number K�x , t���x��x , t�
as follows:

Rt = rR + b3R3 − R5 − 2k0
2Rxx + 6K2Rxx + 12RxKKx − k0

4R

− K4R + 2k0
2K2R + 3RKx

2 + 4RKKxx − Rxxxx, �21�

Kt = − 2k0
2
2

Rx

R
K + Kx�

x
− 
4

Rxxx

R
K + 6

Rxx

R
Kx + 4

Rx

R
Kxx

+ Kxxx − 4
Rx

R
K3 − 6K2Kx�

x
. �22�

Writing R=R0+u with R0 a homogeneous solution and K
=v, where u=O�
2�, v=O�
�, and 

1 is a small parameter
measuring the wave number of the perturbation, one obtains
the following equation for u:

ut = �r − k0
4 + 3b3R0

2 − 5R0
4�u + �3b3R0 − 10R0

3�u2 + 2k0
2R0v

2

+ 2k0
2uv2 + 3R0vx

2 + 4R0vvxx − R0v
4 − 2k0

2uxx

+ higher order terms. �23�

We now write u=�v2+w, where �=O�1� and w is of order
O�
4�, and take �t�O�
4�, obtaining at leading order �cf.
�36��

� = −
2k0

2R0

r − k0
4 + 3b3R0

2 − 5R0
4 , �24�

w = −
��3b3 − 10R0

2�R0�2 + 2k0
2� − R0�v4

r − k0
4 + 3b3R0

2 − 5R0
4

−
�3R0 − 4k0

2��vx
2 + 4�R0 − k0

2��vvxx

r − k0
4 + 3b3R0

2 − 5R0
4 . �25�

With u=�v2+w, Eq. �22� yields to O�
7� the result

vt = �− 2k0
2v − vxx − �0v

3 − �1v
5�xx

− c�v2vxxx�x − d�vvxvxx�x − e�vx
3�x + higher order terms.

�26�

Expressions for the coefficients in this equation can be found
in the Appendix.

The above derivation is asymptotically consistent pro-
vided we take k0=O�
� in which case we obtain at leading
order the Cahn-Hilliard equation �37�

vt = �− 2k0
2v − vxx − �0v

3�xx �27�

with

�0 = − 2	1 +
8k0

4

3�r − k0
4 + 3b3R0

2 − 5R0
4�
 � − 2. �28�

Alternatively we can take k0 to be larger, k0=o�
�, take v
=o�
�, and rescale length and time to obtain Eq. �27� in its
more usual form with a small coefficient in front of vxx. Such
a rescaling is possible without reintroducing any of the
higher order terms in Eq. �27�.

The Cahn-Hilliard equation was originally derived to de-
scribe the dynamics of phase separation in systems with a
conserved quantity in the context of binary alloys �37�. How-
ever, the model equation arises in many other areas of phys-
ics as well �38�, including spinodal decomposition in thin
films �39�, pattern formation on surfaces, dislocations of mi-
crostructures, crack propagation, and electromigration,
where it is used to describe progressive coarsening �38�. In
the present context the form of the equation is a consequence
of phase conservation across the domain, together with the
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FIG. 13. BS: solution profiles at locations �11� and �12� in Fig. 8. Top two panels: amplitude R and the modulation wave number K
��x�. Third panel: real �solid line� and imaginary �dashed line� parts of the field u. Bottom panel: the field u in the complex plane.
Parameters: r=0.27, b3=1.5, k0=1, L=48, and N=512.
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symmetry R→R, K→−K under spatial reflection present in
Eqs. �21� and �22�. In the following we seek solutions of the
Cahn-Hilliard equation �27� with zero mean, so that ��=0
across the domain, as required of any perturbation of a
constant-phase state.

B. Stationary solutions of the Cahn-Hilliard equation

The Cahn-Hilliard equation, Eq. �27�, has the Lyapunov
functional

F�v� =� dx� 1
2vx

2 − V�v�� , �29�

where �see Fig. 14�

V�v� � k0
2v2 + 1

4�0v
4, �30�

defined such that

vt = �xx��F�v�/�v�x�� . �31�

The stationary states are easily found by integrating the sta-
tionary equation twice,

vxx + 2k0
2v + �0v

3 + �1 + �2x = 0, �32�

where �1 , �2 are integration constants. Symmetry with re-
spect to reflection in v requires that �1=0, while reflection in
x implies that �2=0. Thus,

1
2vx

2 + V�v� = E . �33�

We refer to the integration constant E as the energy.
Since V has two identical maxima ��0�−2�, there is a

pair of symmetry-related spatially homogeneous steady
states given by

vs � � k0 �34�

with energy Es=−k0
4 /�0�0. When 0	E	Es, there is a fam-

ily of spatially periodic nonlinear solutions of zero mean
whose period and amplitude depend on E. These solutions
are, however, known to be unstable �40,41�. As E→Es from
below these solutions degenerate into a pair of heteroclinic
states connecting a pair of symmetric equilibria. These states
are called kinks if the phase increases across the associated

defect, and antikinks if it decreases. A kink-antikink pair is
the long-time zero-area attractor of the equation �40–42�.

The knowledge of these attracting stationary solutions of
the Cahn-Hilliard equation allows us to gain a qualitative
picture of the spatiotemporal dynamics in the CSHE in the
parameter regime in which Eq. �27� applies. Previous work
�42–47� has demonstrated that particlelike or defect solu-
tions, localized in space, can exist in the Cahn-Hilliard equa-
tion. These solutions are sometimes referred to as bubbles,
that is, bound pairs of kink-antikink profiles connecting two
homogeneous states �in our case vs� �k0�. A single bubble
is a stable solution of the equation since the evolution of the
system conserves the area A��0

Lv�x , t�dx. However, a sys-
tem consisting of several bubbles is unstable and in time
exhibits coarsening dynamics, in which smaller bubbles re-
peatedly merge together forming larger and larger structures.
This process is driven by the mutual interaction between the
kink and antikink pairs and is present whenever the spatial
eigenvalues of vs� �k0 are real, i.e., provided there is no
pinning. It is known that at large times the width of the
broadest bubble increases exponentially slowly as a result of
the exponentially small interaction between kinks and anti-
kinks when these are widely separated �48,49�.

C. Numerical verification of coarsening dynamics

In the following we demonstrate that the CSHE equation
does indeed follow the coarsening dynamics predicted from
the Cahn-Hilliard equation and discuss the origin of any dif-
ferences from Cahn-Hilliard dynamics. In Fig. 15, we show a
temporal simulation of the CSHE for r=0, k0=0.1, starting
from an initial condition consisting of four bubbles of differ-
ent widths and separations. For these parameters Eq. �27�
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predicts that Ks� �0.1. For these small values of Ks we
expect the spatiotemporal dynamics of the CSHE to follow
the coarsening behavior of the Cahn-Hilliard equation. Fig-
ure 15 shows that this is indeed the case. Figures 15�a� and
15�b� show the annihilation of the first two bubbles. The
profiles of the phase gradient K��x� and the amplitude R at
the last time step in Figs. 15�a� and 15�b� are shown in Figs.
15�c� and 15�d�, respectively; the panels show that the kinks
and antikinks indeed form connections between the states
Ks= �0.1, as expected. Figures 15�e�–15�h� show this pro-
cess in terms of the real and imaginary parts of the complex
field u. For longer simulation times, the Cahn-Hilliard equa-
tion predicts that the bubbles continue to coarsen until only
one bubble remains, whose area �and hence width� is deter-
mined by the initial condition. However, since the annihila-
tion of the bubbles becomes exponentially slow as the width
and/or separation of the bubbles increases the very slow dy-
namics that leads to the final state is not shown. Advanced
numerical schemes to study this process in one spatial di-
mension have been developed and these have confirmed the
metastable dynamics and very slow coarsening starting from
a large number of bubbles in the initial state �50�.

Within the Cahn-Hilliard equation the interaction between
two or more bubbles has been studied in detail �42,50�. The
results provide a description of the coarsening process in
terms of the motion of the kinks and antikinks defining the
bubbles. Since the Cahn-Hilliard equation conserves area,
during an interaction between two disparate bubbles the glo-
bal center of area moves in the direction of the widest
bubble, and the widest bubble increases its width and moves
slightly toward the thinner one �42�. For comparison, Fig. 16
shows the details of an interaction between two bubbles in
the CSHE. The figure shows that in the CSHE the two
bubbles do indeed attract each other in such a way that the
widest bubble increases its width and moves slowly toward
the narrower one. After annihilation of the smaller bubble,
the remaining bubble relaxes and grows until it takes up half
of the domain. The time evolution of the width of the broad-
est bubble is depicted in Fig. 16�e�. The width d2 has been
defined as the region of the bubble in which K	0. In region
A, the widths of the bubbles are still adjusting themselves to
the initial condition of the simulation. In region B, however,
one can clearly see that the width of the largest bubble in-
creases with time. At time t� the last two bubbles merge, and
in region C �t� t�� the remaining bubble relaxes exponen-
tially slowly to the global minimum of the functional F�v� in
Eq. �29�: with periodic boundary conditions this global mini-
mum consists of one bubble filling half the domain. The
profile of the stable final bubble solution is shown in more
detail in Figs. 16�b� and 16�d� in terms of its phase gradient
K��x� and the phase � itself. For comparison, we show in
Fig. 16�c� the phase � at an earlier time t=2�105. We con-
clude that the CSHE does indeed follow the expected Cahn-
Hilliard type of coarsening dynamics when k0 is sufficiently
small that the derivation of the Cahn-Hilliard equation �Eq.
�27�� is self-consistent.

We have also performed simulations for the same param-
eter set, but using initial conditions with a net phase jump
��=2�n across the domain, where n is an integer. Since the
phase jump is conserved by the evolution such an initial

condition corresponds to a perturbation around a state with
phase gradient K=2�n /L, i.e., a phase-winding state, instead
of the case K=0 for which the Cahn-Hilliard equation has
been derived. For this case �1�0 in Eq. �32�, changing the
potential V�v� depicted in Fig. 14. However, if we allow only
a phase jump �� such that K=2�n /L and �1 remain small,
the inverted double-well potential changes only slightly and
one expects the coarsening process to persist, at least for
long times. This is the case in Fig. 17 which shows the evo-
lution of an n=2 initial condition on a domain of length L
=300. The coarsening is now observed for finite times only,
although the most prominent difference between the behav-
ior of the CSHE and the Cahn-Hilliard equation is seen in the
relaxation to the final one-bubble solution. Here, the imposed
phase gradient, small though it is, pins the bubble and pre-
vents it from relaxing to half the domain length. Indeed, we
observe almost no relaxation once the two bubbles merge. As
a result the size d2 of the last bubble changes only slightly as
t→�. Throughout the entire time evolution ��=4�=12.57
and we may use this fact to write down an approximate ex-
pression for the final bubble size d2,

2n� = vs�d1 − d2� � k0�L − 2d2� ,

implying that
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FIG. 16. Spatiotemporal simulation of the CSHE from an initial
condition with n=0 consisting of two bubbles of different widths.
Parameters: r=0, b3=1.5, k0=0.1, L=200, and N=512. �a� Space-
time contour plot of K��x�. High �low� K is color coded by white
�black�. �b� The final profile of K taken from the last time step in
�a�. �c� and �d� Phase profiles � at t=2�105 and at the final time
t=1.5�106, respectively. �e� The time evolution of the width d2 of
the broadest bubble.
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d2 =
L

2
−

�n

k0
, �35�

with n an integer determined by the initial conditions �here
n=2�. For the parameters chosen in Fig. 17, Eq. �35� yields
d2=87.2, which agrees very well with the final bubble size
observed in Fig. 17.

D. Transition from coarsening to faceting behavior

As discussed in Sec. IV, coarsening behavior is no longer
present for larger values of k0. Instead one observes faceting
in which fronts connecting equal and opposite phase gradi-
ents K are pinned to each other, permitting the coexistence of
multiple stable bubbles. Direct numerical simulations of the
CSHE �Eq. �2�� show that these fronts always connect states
with K= �k0. These simulations thus extend the conclusion
obtained analytically from the Cahn-Hilliard equation de-
rived in Sec. V A for small values of k0 to much larger val-
ues of k0.

In order to predict the value of k0 at which the transition
from coarsening to faceting behavior takes place we examine
the spatial eigenvalues of the phase-winding state with K
=k0 as described by Eq. �20�. Since the decay of spatial
perturbations around this phase-winding state is controlled
by the slowest eigenvalue, i.e., the eigenvalue with the small-
est nonzero real part, coarsening will take place whenever
this eigenvalue is purely real and oscillatory tails are absent.
On the other hand, whenever this particular eigenvalue has a
nonzero imaginary part oscillatory tails will be present al-
lowing adjacent kink and antikinks to lock to one another
�12�. In this case one expects to observe faceting. It follows,
therefore, that the transition between coarsening and faceting
dynamics is given by the point in parameter space where the
eigenvalue with the smallest real part acquires a nonzero
imaginary part.

In Fig. 18 we show the real and imaginary parts of the
spatial eigenvalues of a phase-winding state with modulation
wave number K in the special case in which K=k0. This
choice is motivated by our numerical simulations which
show that the phase gradients involved in the formation of a
localized structure are always k0. For the parameters r=1,
b3=1.5, and K�k0� �0,1�, the eight eigenvalues �as ob-
tained from Eq. �20�� are organized as follows: there is a
quartet of complex eigenvalues ��1,2,3,4= ��r� i�i�, two
purely real eigenvalues ��5=−�6� and a double zero eigen-
value ��7,8=0�. As already mentioned zero eigenvalues are a
consequence of the invariance of the CSHE under phase
shifts, together with spatial reversibility. From Fig. 18, it is
clear that there is a crossover between the magnitude of the
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FIG. 17. Spatiotemporal simulation of the CSHE from an initial
condition with n=2 consisting of two bubbles of different widths.
Parameters: r=0, b3=1.5, k0=0.1, L=300, and N=1024. �a� Space-
time contour plot of K��x�. High �low� K is color coded by white
�black�. �b� The final profile of K as taken from the last time step in
�a�. �c� and �d� Phase profiles � at t=2�105 and at the final time
t=8.4�105, respectively. �e� The time evolution of the width d2 of
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real parts of the complex quartet and the purely real eigen-
values. This crossover occurs around Kcross�0.65 and splits
the graph in two regions: a coarsening region for K=k0
	Kcross and a faceting region where the LS can pin to the
oscillatory tails of the fronts �K=k0�Kcross�. This prediction
of the structure of the spatial eigenvalues is verified in Fig.
19, where we show two temporal simulations of the CSHE:
one for K=k0=0.6	Kcross �Fig. 19�a�� and one for K=k0
=0.7�Kcross �Fig. 19�c��. In both cases we use the same
initial condition consisting of two bubbles—one of which is
much smaller in width than the other one—and identical val-
ues of r, b3, and L. The results reveal an unambiguous quali-
tative change in the dynamical behavior of the system from
coarsening to faceting. Moreover, the front profile of the
small bubble �Figs. 19�b� and 19�d�� confirms the absence or
presence of oscillatory tails when coarsening or faceting
takes place.

VI. CONCLUSIONS

We have described a class of states in the bistable com-
plex Swift-Hohenberg equation with real coefficients, which
we have called phase-winding states. These complex-valued
solutions oscillate periodically in space, like the periodic
states of the real Swift-Hohenberg equation, but with a well-
defined phase difference between the real and imaginary
parts. The solutions fall into different families characterized
by the overall phase jump across the domain, which must be
a nonzero integer multiple of 2�. These states are easily
found numerically in the part of parameter space where spa-
tially uniform and in-phase periodic states are unstable, and
then followed to other regions of parameter space.

Associated with the spatially extended phase-winding
states one finds a class of localized states taking the form of
defects connecting phase-winding states with equal and op-
posite phase lag. The resulting phase defect is reflected in the
amplitude of the complex field as well. These types of local-
ized structures appear to be related to the defect states re-
cently described by Burke et al. �51� and Ma et al. �52� in the
context of the forced Ginzburg-Landau equation.

The spatially extended phase-winding states and the de-
fect states both exist over a wide range of parameters. The

latter are organized in a structure closely resembling that
identified in the real Swift-Hohenberg equation with a f23
nonlinearity that organizes localized states in a nonzero but
homogeneous background �7�. In both cases stacks of dis-
connected branches that extend to arbitrarily large values of
the control parameter r are observed.

These defects correspond to fronts connecting equal and
opposite phase gradients. The fronts that are observed for
order-one wave number k0 have oscillatory tails allowing
Pomeau locking between kinks and antikinks, stabilizing the
localized states. In this region the phase variation resembles
a faceted surface with abrupt changes in the phase gradient.
On the other hand, when the characteristic wave number k0 is
small, stable facets and defects are no longer present. In-
stead, numerical simulations reveal coarsening dynamics of
the fronts. A theoretical analysis of the stability of the zero
phase gradient state with respect to long-wavelength pertur-
bations has led to the well-known Cahn-Hilliard equation for
the perturbation phase gradient, thereby confirming the
coarsening results obtained from simulations of the Swift-
Hohenberg equation �Eq. �2��.

Our study of the bistable CSHE with real coefficients
should prove invaluable for a deeper understanding of the
complex coefficient case �53� that describes subcritical oscil-
latory systems with a finite onset wave number �15,16�. In-
deed, preliminary results show that similar faceting behavior
of phase-winding states occurs in the complex coefficient
case as well. Moreover, an examination of our results sug-
gests that similar faceting should also take place in the su-
percritical case and hence in two-level class A and C lasers
�17,18�, nondegenerate OPOs �20–22�, photorefractive oscil-
lators �23�, and semiconductor lasers �24� all of which are
described by the supercritical CSHE. However, the bistable
CSHE with complex coefficients does describe passively
mode-locked lasers in appropriate regimes �25� and this sys-
tem offers therefore the best opportunity for an experimental
realization of the behavior described here.

We mention, finally, that one-dimensional fronts in the
two-dimensional Swift-Hohenberg equation for a real order
parameter may also undergo a faceting or zigzag instability
�54,55�. This instability results in a faceted front and is dis-
tinct from the faceting in the spatial phase of the pattern
described here.
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FIG. 19. Spatiotemporal simulation of the CSHE from an initial condition with n=0 consisting of two bubbles of different widths.
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APPENDIX: COEFFICIENTS IN THE CAHN-HILLIARD
EQUATION

As shown in Sec. V, the evolution of small perturbations
of the phase gradient K��x� around K=0 is governed by
Eq. �27� obtained as the leading order balance in the equation

vt = �− 2k0
2v − vxx − �0v

3 − �1v
5�xx

− c�v2vxxx�x − d�vvxvxx�x − e�vx
3�x + higher order terms.

�A1�

The coefficients in this equation are

�0 = − 2
1 −
4k0

2�

3R0
� , �A2�

�1 = −
16k0

2��3b3 − 10R0
2�R0�2 + 2k0

2� − R0�
5R0�r − k0

4 + 3b3R0
2 − 5R0

4�
−

8���k0
2 + R0�

5R0
2 ,

�A3�

c =
8�

R0
−

16k0
2�R0 − k0

2��
R0�r − k0

4 + 3b3R0
2 − 5R0

4�
, �A4�

d =
44�

R0
−

8k0
2�5R0 − 6k0

2��
R0�r − k0

4 + 3b3R0
2 − 5R0

4�
, �A5�

e =
12�

R0
, �A6�

where

� = −
2k0

2R0

r − k0
4 + 3b3R0

2 − 5R0
4 , �A7�

R0
2 = 1

2 �b3 � �b3
2 + 4�r − �vs

2 − k0
2�2�� . �A8�

The Cahn-Hilliard equation �27� is obtained when k0
1.
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